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Abstract
We study the two-site Hubbard–Holstein model by using an extended phonon coherent state.
For the nontrivial singlet bipolarons, the double occupancy probability, the fidelity and the
entanglement entropy are calculated to characterize the ground-state properties in both two-site
and single-site bipolaron-dominated regimes. We use the localized minimum of the fidelity to
define a crossover and plot the bipolaron phase diagram, which separates the large and small
entanglement region. Furthermore, the relation between the bipolaron entanglement and the
correlation functions demonstrates that the large entanglement corresponds to the large
magnitude of lattice deformations induced by electrons.

1. Introduction

Recently, contemporary alternative characterizations of the
ground-state (GS) properties have been focused on quantum
information tools in terms of quantum entanglement [1–5] and
fidelity [6–15], which will establish a somewhat interesting
understanding from the field of quantum information theory
to condensed matter physics. The entanglement entropy,
no doubt, quantifies the strength of quantum correlations
between subsystems of a compound system. More recently,
the crossover characterizing the GS properties of the attractive
Bose–Hubbard model [14] and the BCS Bose–Einstein
condensation crossover [16] are investigated in terms of the
fidelity. It is thus expected that the fidelity is able to furnish
a signature of the bipolaron crossover in the electron–phonon
coupling systems.

While most of the work in this relatively new
field focuses on several concrete models, such as spin
models [3, 8, 11, 17, 18] or fermionic models [4, 9, 19, 20],

5 Author to whom any correspondence should be addressed.

the significant Hubbard–Holstein (HH) model went somewhat
unaddressed so far due to a computational challenge [21–27].
Motivated by this, we investigate a simplified two-site HH
model, where two electrons hop between two adjacent lattice
sites. It is not only a prototype of the HH model but also
helpful to better understand the interesting problem of what
happens when the electron–electron (e–e) interactions coexist
with the electron–phonon (e–ph) interaction. We are interested
in the insight provided by observables borrowed from quantum
information theory. The fidelity is expected to detect the
different bipolaron regions driven by the competition between
the e–e and e–ph interactions. The entanglement entropy,
in the presence of the quantum correlation, is exploited to
quantify bipartite entanglement between electrons and their
environment phonons. Despite this simple model having been
previously investigated by the variational method [28, 29],
numerical diagonalization [30, 31] and Green’s functions
solution [32], the exact GS wavefunction is still an obstacle
in the calculation of the GS fidelity and entanglement entropy.

The extended bosonic coherent state approach was re-
cently successfully addressed in many-body systems [5, 33–35].
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In this work, we develop this concise technique to deal with
the two-site HH model exactly. The advantage of this exact
solution is that the wavefunction is proposed explicitly, by
which the GS fidelity and the entanglement entropy can be
calculated directly. This paper is organized as follows. In
section 2 we introduce the model and describe the approach.
In section 3, from the quantum information perspective, we
calculate the GS fidelity and its susceptibility, the linear
entropy and its relation with the correlation function to study
crossover properties. The main conclusions are given in
section 4.

2. Hamiltonian and solution

The Hamiltonian of the two-site HH model takes the form

H =
∑

i,σ

εniσ −
∑

σ

t (c†
1σc2σ + H.c.)

+ U
∑

i

ni↑ni↓ + V n1n2 + g1ω0

∑

i,σ

ni,σ (bi + b†
i )

+ g2ω0

∑

i,σ

ni,σ (bi+δ + b†
i+δ)+ ω0

∑

i

b†
i bi , (1)

where i(= 1 or 2) denotes the label of sites. i +δ = 2 for i = 1
and vice versa. ciσ (c

†
iσ ) annihilates (creates) an electron at site

i with σ , and ni,σ (=c†
iσ ciσ ) are electron number operators.

ε is the unperturbed site potential. t is the usual hopping
integral. U and V denote the on-site and inter-site Coulomb
repulsion between electrons, respectively. g1 and g2 denote
the on-site and inter-site e–ph coupling parameters. bi(b

†
i ) is

the annihilation (creation) operator of the local phonon mode
at site i . ω0 is the phonon frequency and is set to unity for
convenience.

Introducing new phonon operators a = (b1 + b2)/
√

2 and
d = (b1 − b2)/

√
2, the Hamiltonian (1) can be written in two

independent parts (H = Hd + Ha):

Hd = d†d +
∑

i,σ

εniσ −
∑

σ

t (c†
1σc2σ + H.c.)+ V n1n2

+ U
∑

i

ni↑ni↓ + g−(n1 − n2)(d + d†)− n2g2
+ (2)

and Ha = ã†ã, where ã† = a† + ng+, ã = a + ng+,
g+ = (g1 + g2)/

√
2 and g− = (g1 − g2)/

√
2. Ha describes

a shifted oscillator and represents lowering of energy, which is
a constant motion. Hd represents an effective e–ph coupling
system whose phonons are coupled linearly with the electrons.

As illustrated in the previous work [28, 32], the triplet two-
electron eigenstates of the effective Hamiltonian Hd is trivial
and we ignore these states in the following. In terms of the
singlet electron state c†

1↑c†
1↓|0〉e, c†

2↑c†
2↓|0〉e and 1√

2
(c†

1↑c†
2↓ −

c†
1↓c†

2↑)|0〉e, the bipolaronic wavefunction |ψ〉 is expressed as

|ψ〉 = |ϕ1〉c†
1↑c†

1↓|0〉e + |ϕ2〉c†
2↑c†

2↓|0〉e

+ |ϕ3〉 1√
2
(c†

1↑c†
2↓ − c†

1↓c†
2↑)|0〉e, (3)

where |ϕ1〉, |ϕ2〉 and |ϕ3〉 correspond to phonon states.
Inserting it into a Schrödinger equation for the effective
Hamiltonian in equation (2), it yields

[A† A + 2ε − 4(g2
1 + g2

2)+ U ]|ϕ1〉 − √
2t|ϕ3〉 = E |ϕ1〉 (4)

[B† B + 2ε − 4(g2
1 + g2

2)+ U ]|ϕ2〉 − √
2t|ϕ3〉 = E |ϕ2〉 (5)

[d†d +2ε−2(g1 + g2)
2 + V ]|ϕ3〉−

√
2t (|ϕ1〉+|ϕ2〉) = E |ϕ3〉

(6)
where we have used two displacement transformations A† =
d† + 2g− and B† = d† − 2g−. Note that the linear term
for the phonon operator d(d+) is removed and two new free
bosonic fields with operators A(A+) and B(B+) appear. In
terms of the basis of these new operators, the phonon states
can be expressed as |ϕ1〉 = ∑Ntr

n=0 f1n(A+)n|0〉A and |ϕ2〉 =∑Ntr
n=0 f2n(B+)n|0〉B , where Ntr is the truncated boson number.

As we know the vacuum state |0〉A(B) = e∓2g−d†−2g2− |0〉 is
just a bosonic coherent state in d(d+) with an eigenvalue
−2g−(2g−) [33–35]. So this new basis is overcomplete and
actually does not involve any truncation in the Fock space of
d(d+), which highlights the present approach. It is also clear
that many-body correlations for bosons are essentially included
in extended coherent states |ϕ1〉 and |ϕ2〉. As usual, the phonon
state |ϕ3〉 = ∑Ntr

n=0 f3n(a+)n|0〉 is expanded in a complete basis
|n〉, which is the Fock state of d(d+).

Based on these coherent phonon states, we can explicitly
solve the Schrödinger equations in equations (4)–(6) by the
numerical diagonalization method in dimensions 3Ntr × 3Ntr .
To obtain the true accurate results, in principle, the truncated
number Ntr should be taken to infinity. As reported in
detail in [5], bosons Ntr can be added step by step until
further corrections will not change the results. In the present
calculation, Ntr = 30 is large enough to give very accurate
results with a relative error less than 10−6 in the whole
parameter range. It should be noted that in the exact
diagonalization in the Fock space of the original phonon state
d [31], a considerably large phonon number is needed to give
reasonably good results. We believe that we have exactly
solved this model numerically.

To show the effectiveness of the present approach, we
first calculate the GS energy. Figure 1(a) presents the GS
energy E0/t as a function of the on-site effective coupling
strength λ = g2

1/t by setting g2 = 0 conveniently. The
results for the energy by the variational method based on the
modified Lang–Firsov transformation with a squeezing phonon
state transformation (MLFS) [28] are also listed. It is observed
that the present results are lower than the MLFS results [28],
especially in the intermediate coupling regime. Comparing
with figure 1(a) in [32], we find that the present results for the
GS energy are consistent with those from the lowest pole of
Green’s function.

3. Ground-state properties

3.1. Crossover from two-site to single-site bipolarons

As shown in figure 1(a) there are two distinct regimes. In [32],
the energy versus λ curves in the two regimes are fitted by
two functions, and the abrupt drop of the first-order derivative
signals the crossover regime from two-site bipolarons to single-
site bipolarons. We will propose a quantitative criterion.
Because the exact wavefunction in the present technique is
explicitly given, we can first calculate the probability of the

2
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Figure 1. (a) GS energy E0/t of the exact solution (solid line) and MLFS transformation (dashed line) versus λ for U = 0, 3, 6 and 10. The
red line represents twice the polaron GS energy, which then separates the polaron and bipolaron regimes. (b) The probability of the two-site
bipolarons P2 for U = 0, 3, 6 and 10. The other parameters are chosen: V = 0, t = 2.0, ε = 0.

system that two electrons are in two sites by equation (6)
directly:

P2 = 〈ϕ3|ϕ3〉. (7)

The probability of the two-site bipolarons P2 is shown in
figure 1(b). At the weak coupling, the two electrons prefer
to stay in two sites. As the coupling strength increases, the two
electrons tend to occupy the single site. Strictly speaking, at
weak (strong) coupling, pure two-site (single-site) bipolarons
do not exist. We can only say that two-site (single-site)
bipolarons dominate. The crossover regime is wide for weak
on-site Coulomb repulsion U . As U increases, the crossover
shifts to larger λ and becomes sharper. However, the sudden
jump of P2 is not observed.

The inter-site Coulomb repulsion V may favor the
formation of single-site bipolarons. To show this effect, we
calculate the GS energy and the probability of the two-site
bipolarons for several values of V for fixed U , which are
displayed in figure 2. It is clear that the crossover shifts
to smaller λ with increasing V and becomes smoother. It
should be pointed out that further consideration of the inter-
site Coulomb repulsion V will not yield additional effort
mathematically, because the coefficient V can be absorbed in
U for the two-site case.

The bipolaron problem in the HH model in many sites was
studied numerically by Wellein et al [26] and Bonča et al [27]
many years ago. It was found that a transition (crossover) from
inter-site bipolarons, equivalent to the two-site bipolaron in our
two-site model, to the on-site bipolaron occurs as the electron–
phonon coupling increases. It is interesting to note that the
present observation is consistent with the previous picture for
the HH model in many sites.

Figure 2. GS energy E0/t and the probability of the two-site
bipolarons P2 in the inset versus λ for V = 0, 2, 4, 6 and 10 by
choosing U = 0.2, t = 2.0 and ε = 0.8.

3.2. Crossover properties from a quantum information
perspective

As we mentioned, the fidelity, which emerged from the
perspective of the GS wavefunctions [8, 12], is expected to
provide insight into the interplay between the e–ph coupling
and e–e Coulomb repulsion. A simple expression of the
fidelity F(g1, g1 + δg1) is given just by the modulus of the
overlap [9]:

F = |〈ϕ1(g1)|ϕ1(g1 + δg1)〉 + 〈ϕ2(g1)|ϕ2(g1 + δg1)〉
+ 〈ϕ3(g1)|ϕ3(g1 + δg1)〉| (8)

where |ψ(g1)〉 and |ψ(g1 + δg1)〉 are two normalized GS
corresponding to neighboring Hamiltonian parameters. While
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Figure 3. GS fidelity F and its susceptibility S versus λ for U = 0, 3, 6, 8 by choosing V = 0.2, t = 2.0 and ε = 0.8.

the fidelity susceptibility S(g1) is regarded as a more effective
tool, because it is independent of the arbitrary small amount of
the parameter δg1:

S(g1) = lim
δg1−→0

[1 − F(g1, g1 + δg1)]/(δg2
1). (9)

We first calculated the GS fidelity F as a function
of effective coupling strength λ for different e–e Coulomb
repulsion U , as shown in figure 3(a). In our calculations,
δg1 = 10−3 is used. As is evident, a smooth drop around a
certain value λmin is observed, which separates the two-site
and singlet-site bipolaron-dominated regions. An occurrence
of a localized minimum of the fidelity can be regarded as a
signature for the crossover, where the intrinsic properties of
the wavefunction changes considerably. Note that the values
of the GS fidelity are around 1 in the two limits. For the first-
order quantum phase transition system, the GS wavefunctions
from different sides of the level-crossing point are almost
orthogonal [8]. However, there is an absence of the level
crossing and then values of peaks of the GS fidelity are around
1 rather than 0 in the crossover regime. Further evidence for
this crossover is given by the susceptibility S, which shows
a peak in the intermediate coupling regime in figure 3(b).
Obviously, the crossover becomes sharper and λmin is larger
as the e–e Coulomb repulsion U increases. It implies that
the two-site to single-site bipolaron transition is suppressed
by the e–e Coulomb repulsion. The corresponding U/t–λ
phase diagram is displayed in figure 4 using the localized
minimum (maximum) of the GS fidelity F (its susceptibility
S) to define the crossover. In other words, the GS fidelity and
its susceptibility signal precursors of the crossover from two-
site to singlet-site bipolarons.

To illustrate the ground-state configurations in these two
regimes, we calculate the GS wavefunction for phonons, which
can be described in the x representation by using the phonon

Figure 4. The crossover from two-site to single-site-dominated
bipolaron is displayed by the U/t–λ phase diagram according to the
localized minimum (maximum) of the fidelity (its susceptibility) for
V = 0.2, t = 2.0, ε = 0.8.

Fock state

|N〉ph =
√

1√
π2N N ! e−x2/2 HN (x),

with HN(x) the Hermite polynomials of order N . According
to equation (5), we plot the probability distribution ρ1, ρ2 and
ρ3 of phonons where two electrons are at single site 1, single
site 2 and two sites for λ = 1 and 2.5 in figure 5. Here U = 3.0
and the other parameters are the same as those in figure 4.
The probability distribution of phonons for both pure two-site
bipolarons and single-site bipolarons are symmetric with the
zero point. As shown in figure 4, λ = 1 is in the two-site
bipolaron regime, while λ = 2.5 is in the single-site bipolaron

4
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Figure 5. The probability distribution of the phonons for (a) λ = 1 and (b) λ = 2.5. U = 3.0 and the other parameters are the same as those
in figure 4.

Figure 6. (a) Linear entropy El versus λ for U = 0, 3, 6 and 8. The maximum El = 0.5 corresponds to the single-site bipolaron in a strong
coupling region. (b) The U/t–λ line is the edge of the cliff which separates the large and small entanglement regions. In all cases V = 0.2,
t = 2.0 and ε = 0.8.

regime. The probability distribution of phonons for pure two-
site bipolarons takes the Gaussian-like form displaced from the
zero point at λ = 1 and splits into two small peaked ones at
λ = 2.5. The probability distribution of phonons for single-
site bipolarons takes the Gaussian-like form displaced from a
nonzero point at the two-site bipolaron regime (λ = 1). It
becomes larger at the single-site bipolaron regime (λ = 2.5).

Moreover, the character of the entanglement entropy can
be used effectively to examine its relation to the interplay
between the e–ph interaction and e–e Coulomb repulsion.
Here, the linear entropy El [36, 39, 37] is an alternative
measurement for the entanglement between electrons and their
phonon environment, which is a linearized version of the von
Neumann entropy. Its definition is

El = 1 − Trρ2, (10)

where ρ = Tr(|ψ〉〈ψ|) is the reduced density matrix of
electrons by taking a partial trace over the phonon degrees of
freedom. Attributed to the normalized GS wavefunction |ψ〉 of
the singlet bipolaronic state in equation (5), the linear entropy
can be derived simply as

El = 1 − [〈ϕ1|ϕ1〉2 + 〈ϕ2|ϕ2〉2 + 〈ϕ3|ϕ3〉2

+ 2 Re(〈ϕ1|ϕ2〉2 + 〈ϕ1|ϕ3〉2 + 〈ϕ2|ϕ3〉2)]. (11)

As plotted in figure 6(a), the linear entropy El increases
smoothly with the e–ph coupling parameters λ in the origin
and then reaches a constant 0.5 for U = 0, 3, 6 and 8.
Obviously there is an occurrence of the crossover regime
in the intermediate coupling regime, which shifts to larger
λ with increasing U . Similar crossover behavior has been
demonstrated by the GS fidelity F and its susceptibility. In
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Figure 7. Correlation function versus λ (a) −〈n1u1〉, (b) −〈n1u2〉 and (c) −〈(n1 − n2)(u1 − u2)〉/g1 for U = 0, 3, 6 and 10 by choosing
V = 0.2, t = 2.0 and ε = 0.8. A more abrupt crossover occurs for larger U = 10 (solid line).

general, in the weak e–ph coupling region, each electron
is dressed with phonons of its own site and form a so-
called two-site-dominated bipolaron. It leads to the degree of
the e–ph entanglement increase with the e–ph interaction λ.
Meanwhile it is suppressed by the on-site Coulomb repulsions
U . Consequently, the linear entropy El describes the intrinsic
competition between the e–ph interaction and e–e Coulomb
repulsion. As λ exceeds the crossover regime, the e–ph
interaction dominates and the entire charge of the electrons and
entire deformations of the lattices are restricted on one site.
As a result, the single-site bipolarons are maximally entangled
El = 0.5, independent of λ and U , in the strong coupling
region. Figure 6(b) shows that the U/t–λ line is the edge
of the cliff which separates the large and small entanglement
regions. Therefore we can say that, in the presence of
quantum correlations, the two-site (singlet-site) bipolarons are
effectively characterized by the low (high) degree of bipartite
quantum entanglement.

Some correlation functions may be closely related to the
entanglement entropy [38, 39]. Naturally, we seek classically
to discuss this crossover by means of the static on-site and
inter-site correlation functions 〈n1u1〉 and 〈n1u2〉, which reveal
the spatial extent of lattice deformations induced by electrons,
respectively. The ui denotes the lattice deformations on site i
produced by the electrons and ni is the number operator of the
electrons. The GS correlation functions are written as [34, 40]

〈n1u1,2〉 = n1

2
〈±(d + d†)− 2g1n〉. (12)

The positive (negative) sign is associated with 〈n1u1〉 and
〈n1u2〉, respectively. By using the exact GS wavefunction of
the singlet bipolaronic state obtained above, the correlation

functions equation (12) can be expressed as follows:

〈n1u1〉 = −2g1

N∑

m=0

(2c2
m + f 2

m)+
N∑

m=1

√
m(c∗

mcm−1

+ 0.5 f ∗
m fm−1)+

N−1∑

m=0

√
m + 1(c∗

mcm+1

+ 0.5 f ∗
m fm+1). (13)

〈n1u2〉 = −2g1

N∑

m=0

(2c2
m + f 2

m)−
N∑

m=1

√
m(c∗

mcm−1

+ 0.5 f ∗
m fm−1)−

N−1∑

m=0

√
m + 1(c∗

mcm+1

+ 0.5 f ∗
m fm+1). (14)

The functions −〈n1u1〉 and −〈n1u2〉 against the e–ph
coupling strength λ are plotted in figures 7(a) and (b). One
can observe that −〈n1u1〉 and −〈n1u2〉 increase monotonically
with λ in the weak coupling regime. When λ exceeds a critical
value, −〈n1u1〉 and −〈n1u2〉 show different behaviors. A
continuous change in the curvature of −〈n1u2〉 is the transition
point in the crossover region, the so-called crossover point,
where −〈n1u2〉 reaches its maximum in figures 7(b). It leads to
the result that the singlet-site bipolaron and the two electrons
are localized on one site in the strong coupling region. Thus the
e–ph interaction is the dominant effect and corresponds to the
maximal entanglement of the singlet-site bipolaron, as shown
in figure 6(a).

The nature of the crossover from the two-site to single-
site bipolarons can be well marked by the correlation function
〈(n1 − n2)(u1 − u2)〉/g1, where the results are presented in
figure 7(c). It is observed obviously that the two-site bipolaron
regime of the coupling strength λ is wider for larger U in the
weak e–ph coupling regime and the critical point value of λ
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shifts to the right regime where a crossover occurs. The results
are consistent with the above behavior of the GS entanglement.

4. Conclusions

In this work we have solved exactly the two-site Hubbard–
Holstein model by the extended phonon coherent state
approach. Indicator properties, such as the double occupancy
probability, the drop of the fidelity and the incremental
entanglement entropy are employed to locate two-site-
and single-site-dominated bipolaron regions, displaying an
occurrence of crossover. We use the localized minimum
of the fidelity to define a crossover and plot the bipolaron
phase diagram, which separates the large and small
entanglement regions. We demonstrate the relation between
the entanglement and correlation function, the large e–ph
entanglement corresponding to the large magnitude of lattice
deformations. It found that the e–ph interaction and the e–
e Coulomb repulsion have opposite effects on the two-site-to
single-site-dominated bipolaron transition in this two-site HH
bipolaron system. The similar bipolaron crossover behaviors
are also observed classically in the static correlation function.
This study on the basis of exact solutions may provide some
insights into the more complicated Hubbard–Holstein systems
in a infinite chain where the exact solution is hard to obtain.
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[27] Bonča J and Trugman S A 2001 Phys. Rev. B 64 094507
[28] Das A N and Choudhury P 1994 Phys. Rev. B 49 18
[29] Acquaroneet M et al 1998 Phys. Rev. B 58 7626
[30] Ranninger J and Thibblin U 1992 Phys. Rev. B 45 7730
[31] de Mello E V L and Ranninger J 1997 Phys. Rev. B 55 14872
[32] Berciu M 2007 Phys. Rev. B 75 081101(R)
[33] Chen Q H et al 1996 Phys. Rev. B 53 11296
[34] Han R S, Lin Z J and Wang K L 2002 Phys. Rev. B 65 174303
[35] Wang K L, Liu T and Feng M 2006 Eur. Phys. J. B 54 283
[36] Zhao Y, Zanardi P and Chen G H 2004 Phys. Rev. B 70 195113
[37] Wang X and Sanders B 2005 J. Phys. A: Math. Gen. 38 67
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